Top10 luas permukaan kerucut yang panjang jari-jari alasnya 9 cm dan tingginya 12 cm adalah 2022. 1 month ago. Komentar: 0. Dibaca: Share. Like. Ciri-ciri Kerucut . Top 1: luas permukaan kerucut jika jari jari 9 cm dan tinggi 12 cm - Brainly.co.id. Pengarang: Peringkat 114.
Diketahuisebuah tabung berdiameter 20 cm dengan tinggi tabung adalah 24 cm. Berapakah luas permukaan tabung tanpa tutup tersebut? Jawab: Rumus luas permukaan tabung tanpa tutup = π x r (r + 2t) = 3,14 x 10 x (10 x 2 x 24) = 3,14 x 10 x (10 x 48) = 3,14 x 10 x 480 = 15.072 cm2. Jadi, luas permukaan tabung tanpa tutup adalah 15.072 cm2 [/su
LuasPermukaan: tabung, kerucut, dan bola. Perhatikan gambar di bawah ini.Sebuah tempat minum terben Sebuah tabung dengan jari-jari 10 cm dan tingginya 25 cm. Luas permukaan tabung yang panjang jari-jari alasnya 9 cm Luas permukaan sebuah tabung yang memiliki diameter 21 cm Diketahui sebuah kerucut memiliki luas alas 154 cm^2 da
Pembahasan L. permukaan tabung tanpa tutup = π x r (r + 2t) L. permukaan tabung tanpa tutup = 3,14 x 1 5 x (15 x 2 x 36) L. permukaan tabung tanpa tutup = 3,14 x 15 x (15 x 72) L. permukaan tabung tanpa tutup = 3,14 x 15 x 72. L. permukaan tabung tanpa tutup = 3.391,2 cm 2. Jadi, luas permukaan tabung tanpa tutup tersebut adalah 3.391,2 cm2.
Sebuahsilinder alumanium dengan luas penampang 25cm2 dan panjang 10cm dipasang penghubung antara dinding bersuhu berbeda, yakni 302C dan 802C Jika konduktivitas termal logam 205 1Vlm s6 G maka arus yang mengalir melalui silinder alumanium adalah. 682,25 sqrt /s 325,75d/s 512,75 sqrt /s O 256,25 sqrt /s O 453,25 sqrt /s
Vay Tiền Trả Góp Theo Tháng Chỉ Cần Cmnd. Ilustrasi kaleng soda bentuk tabung Foto UnsplashTabung menjadi salah satu bangun ruang sisi lengkung yang kerap ditemui dalam kehidupan sehari-hari. Beberapa contoh benda berbentuk tabung, yaitu drum, toples selai, gelas, botol minum, celengan, dan buku Mathemaics for Junior High School karya University of Maryland Mathematica Project 1959, tabung atau silinder adalah bangun ruang yang dibatasi oleh dua sisi bentuk lingkaran yang kongruen, berhadapan, dan sejajar serta satu sisi tegak berupa sisi terdiri dari beberapa unsur, di antaranyaMemiliki sisi atas tutup dan sisi bawah alas berbentuk lingkaran yang sama bentuk dan diameter tinggi dan jari-jari alas selimut permukaan tabung yang terdiri dari bidang yang meliputi sisi atas, sisi bawah, dan selimut Luas Permukaan TabungMengutip buku Matematika yang ditulis oleh Drs. Marsigit, dkk. 2006, luas permukaan tabung dapat dihitung dengan rumus sebagai berikutLuas Permukaan Tabung= Luas selimut tabung + Luas sisi atas tutup + Luas sisi bawah alasLuas Selimut Tabung = 2 πr x tLuas Permukaan Tabung = 2 πrt + rIlustrasi bentuk tabung Foto UnsplashContoh Soal Luas Permukaan TabungPanjang jari-jari alas sebuah tabung adalah 7 cm dan tingginya adalah 10 cm. Tentukan luas permukaan tabung!Panjang selimut tabung = keliling lingkaran alas tabungLuas selimut tabung = πr x tLuas permukaan tabung = 2 πr t+rJadi, luas permukaaan tabung adalah 748 tabung memiliki jari-jari sebesar 10cm. Jika tingginya 30 cm dan π = 3,14, hitung luas permukaannya!Luas permukaaan tabung = 2π r t + r= 2 x 3,14 x 10 x 30 + 10Jadi, luas permukaannya adalah cm2.
1. Tabung memiliki sisi berbentuk lingkaran sebanyak... buah a. Satu b. Dua c. Tiga tabung memiliki sisi berbentuk lingkaran pada sisi alas dan sisi atas. Jadi jawaban yang tepat adalah B 2. Jaring-jaring tabung yang benar adalah... Pembahasan mari kita perhatikan satu persatu a. Jaring-jaring tersebut dapat membentuk tabung b. Jaring-jaring tersebut tidak dapat membentuk bangun ruang c. Jaring-jaring tersebut membentuk bangun kerucut d. Jaring-jaring tersebut tidak dapat membentuk bangun ruang Jadi, jawaban yang tepat adalah A 3. Pernyataan berikut berkaitan dengan kerucut. Pernyataan yang salah adalah... a. Kerucut memiliki alas berbentuk lingkaran b. Kerucut memiliki satu rusuk c. Kerucut memiliki atap berbentuk lingkaran d. Garis pelukis kerucut menghubungkan titik puncak dengan titik-titik pada lingkaranPembahasan ciri-ciri kerucut adalah a. Memiliki alas berbentuk lingkaran jawaban A benar b. Memiliki satu buah rusuk jawaban B benar c. Garis pelukis pada kerucut menghubungkan titik puncak dengan titik-titik pada lingkaran jawaban D benar Jadi, jawaban yang tepat adalah C 4. Perhatikan gambar kerucut berikut ini! Yang merupakan garis pelukis adalah... a. KL b. MN c. NL d. KMPembahasan mari kita bahas satu persatu opsi di atas a. KL diameter b. MN tinggi c. NL jari-jari d. KM garis pelukis Jadi, jawaban yang tepat adalah D 5. Perhatikan gambar berikut! Yang merupakan diameter kerucut adalah... a. AC dan BO b. BD dan CO c. AC dan TB d. BD dan ACPembahasan mari kita bahas masing-masing garis pada gambar di atas a. AC diameter b. BO jari-jari c. BD diameter d. CO jari-jari e. TB garis pelukis BD dan AC merupakan diameter. Jadi, jawaban yang tepat adalah D 6. Perhatikan gambar kerucut berikut! Ruas garis XP adalah... a. Jari-jari b. Diameter c. Garis pelukis d. Garis tinggiPembahasan XP menghubungkan titik puncak dengan alas kerucut secara tegak lurus. Jadi, XP adalah garis tinggi. Jawaban yang tepat adalah D. 7. Banyaknya sisi dan rusuk berturut-turut dari gambar di bawah adalah... a. 4 dan 3 b. 4 dan 2 c. 3 dan 3 d. 3 dan 2Pembahasan Banyaknya sisi 3, yaitu selimut kerucut, selimut tabung, dan alas tabung. Banyaknya rusuk 2, pada batas antara kerucut dan tabung dan alas tabung Jadi, jawaban yang tepat adalah D. 8. Bangun ruang yang mempunyai satu sisi berupa bidang lengkung, satu titik pusat, dan tinggi sebesar diameternya adalah... a. Kerucut b. Bola c. Tabung d. BalokPembahasan mari kita bahas opsi di atas a. Kerucut memiliki dua sisi b. Bola memiliki satu sisi c. Tabung memiliki tiga sisi d. Balok memiliki enam sisi Jadi, jawaban yang tepat adalah B 9. Sebuah tabung mempunyai jari-jari 10 cm dan tinggi 20 cm. Luas selimut tabung tersebut adalah... a. 125,6 cm2 b. 628 cm2 c. cm2 d. cm2Pembahasan pada soal di atas diketahui r jari-jari = 10 cm t tinggi = 20 cm Rumus untuk mencari luas selimut tabung adalah L = 2πrt atau L = πdt L =2 πrt = 2 x 3,14 x 10 x 20 = cm2 Jadi, jawaban yang tepat adalah C 10. Sebuah tabung mempunyai jari-jari 5 cm dan tingginya 2 kali panjang jari-jari. Luas permukaan tabung tersebut adalah... Pembahasan dari soal di atas diketahui Jari-jari r = 5 cm Tinggi t = 2 x r = 2r cm Rumus untuk mencari luas permukaan tabung adalah L = 2 luas lingkaran + luas selimut tabung Jadi, jawaban yang tepat adalah C 11. Sebuah tabung diameter alasnya 20 cm π=3,14 dan tingginya 25 cm. Luas seluruh permukaan tabung adalah... a. cm2 b. cm2 c. cm2 d. cm2Pembahasan dari soal di atas diketahui Diameter d = 20 cm, jari-jari r = 10 cm Tinggi t = 25 cm Rumus untuk mencari luas permukaan tabung adalah L = 2 luas lingkaran + luas selimut tabung Jadi, jawaban yang tepat adalah B 12. Sebuah tabung berdiameter 28 cm dengan tinggi 26 cm. Luas seluruh permukaan tabung adalah... π=22/7 a. 880 cm2 b. cm2 c. cm2 d. cm2Pembahasan dari soal di atas diketahui Diameter d = 28 cm, jari-jari r = 14 cm Tinggi t = 26 cm Rumus untuk mencari luas permukaan tabung adalah L = 2 luas lingkaran + luas selimut tabung Jadi, jawaban yang tepat adalah C 13. Sebuah tabung jari-jari alasnya 35 cm dan tingginya 10 cm. Luas seluruh permukaan tabung adalah... π=22/7 a. cm2 b. cm2 c. cm2 d. cm2 Pembahasan dari soal di atas dapat kita ketahui Jari-jari r = 35 cm Tinggi t = 10 cm Rumus untuk mencari luas permukaan tabung adalah L = 2 luas lingkaran + luas selimut tabung Jadi, jawaban yang tepat adalah D 14. Jika r = jari-jari dan t = tinggi kerucut, panjang garis pelukis s pada kerucut adalah... Pembahasan perhatikan ilustrasi di bawah ini Perhatikan segitiga siku-siku yang terbentuk. Untuk mencari panjang garis pelukis s kita menggunakan rumus phytagoras Jadi, jawaban yang tepat adalah A 15. Sebuah kerucut memiliki jari-jari alas 10 cm dan panjang garis pelukis 16 cm. Luas selimut kerucut tersebut adalah... a. 502,4 cm2 b. 402,4 cm2 c. 324 cm2 d. 314 cm2Pembahasan dari soal di atas dapat kita ketahui Jari-jari r = 10 cm Garis pelukis s = 16 cm Rumus untuk mencari luas selimut kerucut adalah L = πrs L = 3,14 x 10 x 16 = 502,4 Jadi, jawaban yang tepat adalah A 16. Panjang diameter alas sebuah kerucut 14 cm. Jika tingginya 24 cm, luas seluruh permukaan kerucut adalah... a. 400 cm2 b. 429 cm2 c. 682 cm2 d. 704 cm2Pembahasan berdasar soal di atas, diketahui Diameter d = 14 cm, jari-jari r = 7 cm Tinggi t = 24 cm Rumus untuk mencari luas permukaan kerucut adalah L = luas lingkaran + luas selimut kerucut Jadi, jawaban yang tepat adalah D 17. Jika bentuk bumi seperti bola dengan jari-jari km, luas kulit bumi adalah... km2 Pembahasan pada soal di atas diketahui Jari-jari r = km Rumus untuk mencari luas permukaan bola karena bumi berbentuk seperti bola adalah Jadi, jawaban yang tepat adalah D 18. Luas permukaan bola yang berdiameter 21cm dengan π=22/7 adalah... a. 264 cm2 b. 462 cm2 c. cm2 d. cm2Pembahasan dari soal di atas diketahui Diameter d = 21 cm, jari-jari r = 10,5 cm Rumus untuk mencari luas permukaan bola adalah Jadi, jawaban yang tepat adalah C 19. Gambar di bawah ini adalah bola di dalam tabung. Jika jari-jari 7 cm, luas seluruh permukaan tabung adalah... a. 343π cm2 b. 294 π cm2 c. 147 π cm2 d. 49 π cm2Pembahasan dari soal diketahui Jari-jari r = 7 cm, berarti tinggi t = 2r = 2 x 7 = 14 cm Rumus untuk mencari luas permukaan tabung adalah L = 2 luas lingkaran + luas selimut tabung Jadi, jawaban yang tepat adalah B 20. Perhatikan gambar benda padat berbentuk tabung dan setengah bola berikut! Luas permukaan benda tersebut adalah... π=22/7 a. 702 cm2 b. 802 cm2 c. 902 cm2 d. cm2Pembahasan dari soal diketahui Jari-jari r = 7 cm Tinggi t = 10 cm L = luas ½ bola + luas tabung tanpa tutup Jadi, jawaban yang tepat adalah C 21. Tempat sampah berbentuk tabung dan tutupnya berbentuk setengah bola seperti tampak pada gambar. Luas seluruh permukaan tempat sampah tersebut adalah... a. cm2 b. cm2 c. cm2 d. cm2Pembahasan dari soal di atas diketahui Tinggi t = 20 cm Jari-jari r = 27 cm – 20 cm = 7 cm L = luas ½ bola + luas tabung tanpa tutup Jadi, jawaban yang tepat adalah C 22. Perhatikan gambar gabungan kerucut dan tabung berikut! Luas permukaan bangun tersebut adalah... a. 704 cm2 b. cm2 c. cm2 d. cm2Pembahasan dari soal di atas dapat diketahui Jari-jari r = 7 cm Tinggi tabung tt = 12 cm Tinggi kerucut tk = 36 cm – 12 cm = 24 cm L = luas selimut kerucut + luas tabung tanpa tutup = πrs + luas lingkaran + luas selimut tabung Jadi, jawaban yang tepat adalah C 23. Sebuah peluru terbentuk dari gabungan tabung dan kerucut seperti pada gambar. Luas permukaan peluru tersebut adalah... ... π=22/7 a. 29,04 cm2 b. 23,10 cm2 c. 18,04 cm2 d. 9,24 cm2Pembahasan dari soal diketahui Diameter d = 1,4 cm, jari-jari r = 0,7 cm Tinggi tabung tt = 5 cm Tinggi kerucut tk = 2,4 cm L = luas selimut kerucut + luas tabung tanpa tutup = πrs + luas lingkaran + luas selimut tabung Jadi, jawaban yang tepat adalah A 24. Gambar berikut menunjukkan sebuah benda yang dibentuk dari sebuah tabung dan sebuah kerucut. Luas permukaan benda tersebut adalah... π=3,14 a. 648,24 cm2 b. 658,24 cm2 c. 668,24 cm2 d. 678,24 cm2Pembahasan dari soal diketahui Diameter d = 12 cm, jari-jari r = 6 cm Tinggi tabung tt = 10 cm Tinggi kerucut tk = 18 cm – 10 cm = 8 cm L = luas selimut kerucut + luas tabung tanpa tutup = πrs + luas lingkaran + luas selimut tabung Jadi, jawaban yang tepat adalah D 25. Sebuah lampion berbentuk gabungan kerucut dan belahan bola. Panjang lampion 15,5 cm dan diameternya 7 cm. Bila π=22/7, luas permukaan lampion tersebut adalah... a. 253,0 cm2 b. 247,5 cm2 c. 214,5 cm2 d. 209,0 cm2Pembahasan pada soal dapat kita ketahui Diameter d = 7 cm, jari-jari r = 3,5 cm Tinggi kerucut t = 15,5 – 3,5 = 12 cm L = luas selimut kerucut + luas setengah bola Jadi, jawaban yang tepat adalah C Sekian dulu belajarnya dengan kakak... ditunggu soal-soal dan pembahasan berikutnya ya...
- Simak kumpulan contoh soal MTK Kelas 9 SMP Semester 2. Soal berupa pertanyaan pilihan ganda mata pelajaran Matematika. Soal Matematika ini dilengkapi pula dengan kunci jawaban. Siswa dapat meningkatkan wawasan dengan berlatih soal. Wawasan mendalam diperlukan untuk mendapatkan nilai kenaikan kelas. Berikut Soal MTK Kelas 9 SMP Semester 2 disadur dari beragam sumber. • Contoh Soal Ulangan Kelas 7 SMP IPA Semester 2 Lengkap Kunci Jawaban PAT Soal Ujian Terbaru UAS [Cek Berita dan informasi kunci jawaban SMP klik di Sini] 1. Sebuah bola memiliki jari-jari 10,5 cm. Jika π=22/7 , maka luas kulit bola tersebut adalah …. a. cm2b. cm2c. cm2d. cm2 Jawaban D 2. Luas permukaan dari setengah bola padat dengan panjang jari – jari 10 cm adalah .... a. 912 cm2b. 922 cm2c. 932 cm2d. 942 cm2 Jawaban D 3. Sebuah bola memiliki luas permukaan cm⊃2;. Panjang jari jari bola tersebut adalah … cm. π=3,14 a. 13b. 12c. 11d. 10 Jawaban D 4. Jika sebuah bola memiliki jari jari 6 cm, maka volume bola tersebut adalah .... a. 150,72 cm3b. 409,26 cm3c. 452,16 cm3d. 904,32 cm3 Jawaban D 5. Sebuah bola memiliki volume cm^3, maka jari-jari bola tersebut adalah … cm. π=22/7. a. 31b. 21c. 17d. 7 Jawaban B 6. Diketahui volume sebuah bola adalah 113,04 cm⊃3;. Tentukan diameternya! A. 3 cmB. 6 cmC. 9 cmD. 12 cm Jawaban A 7. Berikut ini yang merupakan rumus luas permukaan 3/4 bola padat adalah... A. 2πr⊃2;B. 3πr⊃2;C. 4πr⊃2;D. 6πr⊃2; Jawaban C 8. Sebuah nasi tumpeng memiliki volume 1232 cm⊃3; dan tinggi 24 cm. Berapakah panjang jari-jari nasi tumpeng tersebut? A. 7 cmB. 8 cmC. 9 cmD. 10 cm Jawaban A 9. Pernyataan rumus luas permukaan yang salah yaitu… A. Luas bola 4πr2B. Luas tabung 2πrr + tC. Luas kerucut πrr + sD. Luas tabung πr2t Jawaban D 10. Sebuah tiang bendera tingginya 4,5 m. Pada saat bersamaan, Rani berdiri di samping tiang, tinggi Rani adalah 1,6 m dan panjang bayangan Rani 2 m. Panjang bayangan tiang bendera adalah... A. 5,625 mB. 5,8 mC. 6,5 mD. 6,625 m Jawaban A • Soal PKN Kelas 9 SMP Semester 2 dan Kunci Jawaban Soal 11. Diberikan dua buah bola dengan jari-jari masing-masing 10 cm dan 20 cm, maka perbandingan volume kedua bola adalah .... a. 3 6b. 2 4c. 1 6d. 1 8 Jawaban D 12. Seorang pengrajin ingin membuat kubah berbentuk belahan bola dengan bahan alumunium. Kubah tersebut direncanakan mempunyai diameter 1,4 m. Jika harga alumunium maka total biaya minimal yang diperlukan untuk pembelian alumunium adalah .... a. Jawaban A 13. Sebuah akuarium berbentuk bola dengan jari-jari 21 cm akan diisi air sampai penuh. Jika debit air untuk mengisi akuarium adalah 2 liter/menit, maka waktu yang diperlukan untuk mengisi air akuarium sampai penuh adalah …. a. 18,808 menitb. 19,404 menitc. 20,404 menitd. 21,202 menit Jawaban B 14. Sebuah bola berada di dalam tabung, dengan diameter bola sama dengan tinggi dan diameter tabung. Perbandingan volume bola dan volume tabung adalah …. a. 1 2b. 2 1c. 2 3d. 3 2 Jawaban C 15. Sebuah bola dimasukkan kedalam tabung yang mempunyai volume tabung 120 cm^3 . Jika bola berhimpit dengan tutup, alas, dan selimut tabung, maka volume tabung di luar bola adalah .... a. 40 cm^3b. 30 cm^3c. 25 cm^3d. 35 cm^3 Jawaban A 16. Tentukan luas permukaan tabung jika panjang jari-jarinya 14 cm dan tingginya 18 cm! A. cm⊃2;B. cm⊃2;C. cm⊃2;D. cm⊃2; Jawaban B 17. Hitunglah luas selimut tabung yang berjari-jari 21 cm dan tinggi 50 cm... A. cm⊃2;B. cm⊃2;C. cm⊃2;D. cm⊃2; Jawaban B 18. Diketahui sebuah botol minum berbentuk tabung memiliki volume 565,2 cm⊃3; dan panjang jari-jari 3 cm. Berapakah tinggi botol minum tersebut? A. 20 cmB. 24 cmC. 26 cmD. 30 cm Jawaban A 19. Sebuah tangki air berbentuk tabung memiliki diameter 2 meter dan tinggi 5 meter. Berapakah luas permukaan tabung jika tanpa tutup? A. 30,54 meterB. 32,54 meterC. 33,54 meterD. 34,54 meter Jawaban D 20. Luas dua buah bola berturut-turut adalah L1 dan L2 dan volumenya V1 dan V2. Jika panjang jari-jarinya berturut turut 1 dm dan 2 dm, perbandingan volumenya adalah...A. 2 5B. 1 5C. 1 4D. 1 8 Jawaban D • Soal IPS Ujian Kelas 8 SMP Lengkap Kunci Jawaban Soal Semester 2 21. Jari-jari alas kerucut adalah 6 cm. Tinggi kerucut adalah 8 cm. Hitung luas selimut kerucut! A. 185,4 cm⊃2;B. 186,4 cm⊃2;C. 187,4 cm⊃2;D. 188,4 cm⊃2; Jawaban D 22. Jika seorang anak yang mempunyai tinggi badan sekitar 1,5 m di foto. Skala di foto 1 20, tinggi dari anak dalam foto? A. 6,5 cmB. 7 cmC. 7,5 cmD. 8 cm Jawaban C 23. Perhatikan pernyataan berikut s⊃2; =r⊃2; + t⊃2;s⊃2; =r⊃2; - t⊃2;t⊃2; =s⊃2; - r⊃2;r⊃2; =t⊃2; + s⊃2; Pernyataan yang benar dari hubungan antara jari-jari r, tinggi t, dan garis pelukis kerucut s ditunjukkan nomor …. A. 1 dan 3B. 1 dan 2C. 2 dan 4D. 3 dan 4 Jawaban A 24. Sebuah persegi dengan panjang sisi 15 cm. Tentukan perbandingan antara keliling dengan enam kali panjang sisi! A. 2 3B. 3 2C. 4 3D. 3 4 Jawaban A 25. Diketahui sebuah sistem persamaan linear yaitu 2x + 5y = 11 dan 3x – 4y = -18. Bila x dan y nya sudah diketahui, maka berapakah nilai dari 12x – 7y? A. 3B. -3C. 45D. –45 Jawaban D 26. Berikut yang merupakan sifat tabung adalah …. a. memiliki 1 sisib. memiliki 2 sisic. memiliki 3 sisid. tidak memiliki sisi Jawaban C 27. Keliling alas tabung 88 cm dan tingginya 20 cm, maka luas selimut tabung adalah .... a. 1760 cm^2b. 1786 cm^2c. 17,6 cm^2d. 179 cm^2 Jawaban A sebuah tabung cm⊃3; dan luas alasnya 314 cm⊃2;, tinggi tabung tersebut adalah …. a. 7 cmb. 8 cmc. 9 cmd. 10 cm Jawaban B 29. Sebuah tabung mempunyai volume 385 cm3 dengan tinggi 10 cm. Jika π=22/7 maka jari-jari tabung tersebut adalah .... a. 3,5 cmb. 7 cmc. 14 cmd. 21 cm Jawaban A 30. Celengan berbentuk tabung dengan jari-jari 7 cm dan tinggi 25 cm akan dibungkus menggunakan kertas karton. Luas kertas karton untuk membungkus 4 buah tabung adalah …. a. cm2b. cm2c. cm2d. cm2 Jawaban A • Soal IPA Ujian Kelas 8 SMP Lengkap Kunci Jawaban Soal Semester 2 31. Sebuah kaleng berbentuk tabung dengan diameter alas 7 cm. Jika kaleng berisi air setinggi10 cm, maka volume air di dalam tabung adalah .... π=22/7 a. 358 cm3b. 385 cm3c. 388 cm3d. 398 cm3 Jawaban B 32. Sebuah tabung memiliki panjang jari-jari alas 14 cm dan luas permukaan cm2. Tinggi tabung tersebut adalah .... a. 20b. 25c. 50d. 53 Jawaban B 33. Volume sebuah tabung yang memiliki diameter 14 cm dan tinggi 10 cm adalah … cm3. a. Jawaban A 34. Sebuah saluran air yang terbuat dari beton yang berlubang didalamnya. Panjang jari-jari luar 30 cm dan panjang jari-jari dalam 20 cm, sedangkan tingginya 40 cm. Jika berat 1 cm⊃3; adalah 5 gram, maka berat saluran air tersebut dalam satuan kilogram adalah … kg. a. 314c. 31,4d. 3,14 Jawaban B 35. Sebuah tabung mempunyai jari-jari 7 cm dan tinggi 10 cm. Luas permukaan tabung tersebut adalah .... a. 698 cm2b. 748 cm2c. cm2d. 1540 cm2 Jawaban B 36. Perhatikan pernyataan berikut s^2=r^2+t^2s^2=r^2-t^2t^2=s^2-r^2r^2=t^2+s^2 Pernyataan yang benar dari hubungan antara jari-jari r, tinggi t, dan garis pelukis kerucut s ditunjukkan nomor ….a. 1 dan 3b. 1 dan 2c. 2 dan 4d. 3 dan 4 Jawaban A 37. Panjang garis pelukis kerucut jika dikeltahui diamenter 18 cm dan tinggi 12 cm adalah … cm. a. 10b. 15c. 20d. 25 Jawaban B 38. Kerucut memiliki panjang jari-jari 12 cm dan tinggi 16 cm. Luas selimut kerucut adalah .... a. 20 cmb. 75,36 cmc. 400 cmd. 753,6 cm Jawaban D 39. Diketahui panjang garis pelukis sebuah kerucut adalah 13 cm dan diameter alas kerucut 10 cm. Luas permukaan kerucut tersebut adalah …. a. 282,6 cm2b. 274,4 cm2c. 268,6 cm2d. 256,8 cm2 Jawaban A 40. Diketahui sebuah kerucut memiliki diameter 12 cm dan tingginya 8 cm. Volume kerucut tersebut adalah …. a. cm⊃3;b. 301,44 cm⊃3;c. 150,72 cm⊃3;d. 75,36 cm⊃3; Jawaban B • 70 Soal Matematika Ujian Kelas 8 SMP Lengkap Kunci Jawaban Soal Semester 2 41. Sebuah kerucut memiliki volume sebesar cm⊃3. Jika tinggi kerucut tersebut adalah 12 cm dan π=22/7, maka jari-jari alasnya adalah .... a. 14 cmb. 15 cmc. 16 cmd. 21 cm Jawaban A 42. Bu Ida ingin membuat nasi tumpeng untuk acara perayaan. Agar bentuk nasi tumpengnya sempurna, bu Ida membuat cetakan tumpeng terlebih dahulu dari daun pisang. Jika cetakan yang dibuat mempunyai jari-jari 14 cm dan panjang kemiringan cetakan 20 cm, maka luas cetakan tersebut adalah .... a. 440 cm2b. 660 cm2c. 880 cm2d. 1100 cm2 Jawaban C 43. Corong berbentuk kerucut dengan volume 924 cm3. Jika panjang jari-jarinya 7 cm, maka tinggi corong tersebut adalah ... cm. a. 15b. 18c. 21d. 24 Jawaban B 44. Perhatikan beberapa sifat bangun ruang berikut 1. Memiliki dua sisi2. Tidak memiliki titik sudut3. Memiliki satu titik pusat4. Alas dan tutup berupa lingkaranYang merupakan sifat-sifat bangun ruang bola adalah …. a. ii dan ivb. i dan ivc. ii dan iiid. i dan iii Jawaban C 45. Berikut ini yang merupakan rumus luas permukaan 3/4 bola padat adalah .... a. 2 π r2b. 3 π r2c. 4 π r2d. 6 π r2 Jawaban C • Soal Matematika Ujian Kelas 8 SMP Lengkap Kunci Jawaban Soal Semester 2 *
Unduh PDF Unduh PDF Luas permukaan suatu bangun adalah jumlah luas semua sisinya. Untuk mengetahui luas tabung, Anda harus mencari luas alas-alasnya dan menjumlahkannya dengan luas dinding luar atau selimutnya. Rumus untuk mencari luas permukaan tabung adalah L = 2πr2 + 2πrt. 1Bayangkan bagian atas dan bawah tabung. Kaleng sup memiliki bentuk silinder. Jika Anda membayangkannya, kaleng itu memiliki bagian atas dan bawah yang berbentuk sama, yaitu lingkaran. Langkah pertama untuk mencari luas permukaan tabung Anda adalah mencari luas kedua lingkaran ini.[1] 2 Carilah jari-jari tabung Anda. Jari-jari adalah jarak dari pusat lingkaran ke bagian luar lingkaran. Jari-jari disingkat “r”. Jari-jari tabung sama dengan jari-jari lingkaran atas dan lingkaran bawah. Dalam contoh ini, jari-jari alasnya adalah 3 cm.[2] Jika Anda menyelesaikan soal cerita, jari-jari mungkin telah diketahui. Diameter mungkin juga telah diketahui, yaitu jarak dari salah satu sisi lingkaran ke sisi lainnya melewati titik pusat. Jari-jari adalah setengah diameter. Anda dapat mengukur jari-jari dengan penggaris jika berniat mencari luas permukaan tabung sesungguhnya. 3 Hitunglah luas permukaan lingkaran atas. Luas permukaan lingkaran sama dengan konstanta pi ~3,14 dikali jari-jari lingkaran kuadrat. Persamaan itu ditulis sebagai π x r2. Ini sama dengan π x r x r. Untuk mencari luas alasnya, masukkan saja jari-jari 3 cm ke dalam persamaan untuk mencari luas permukaan lingkaran L = πr2. Inilah cara menghitungnya[3] L = πr2 L = π x 32 L = π x 9 = 28,26 cm2 4Lakukan perhitungan yang sama untuk lingkaran bagian bawahnya. Karena sekarang Anda sudah mengetahui luas salah satu alasnya, Anda harus menghitung luas alas yang kedua. Anda dapat menggunakan langkah-langkah perhitungan yang sama seperti alas yang pertama. Atau, Anda mungkin menyadari bahwa kedua alas lingkaran ini sama persis. sehingga tidak perlu menghitung luas alas yang kedua jika memahaminya.[4] Iklan 1Bayangkan sisi luar sebuah tabung. Saat Anda membayangkan kaleng sup yang berbentuk tabung, Anda akan melihat alas bagian atas dan bawah. Kedua alas dihubungkan oleh “dinding” kaleng. Jari-jari dinding sama dengan jari-jari alas. Tetapi, tidak seperti alas, dinding ini memiliki tinggi.[5] 2Carilah keliling salah satu lingkaran alasnya. Anda harus mencari keliling lingkaran untuk mencari luas permukaan sisi luarnya juga disebut luas permukaan lateral atau selimut tabung. Untuk mencari kelilingnya, kalikan saja jari-jari dengan 2π. Jadi, keliling dapat dicari dengan mengalikan 3 cm dengan 2π, atau 3 cm x 2π = 18,84 cm.[6] 3Kalikan keliling lingkaran dengan tinggi tabung. Perhitungan ini akan memberikan luas permukaan selimut tabung. Kalikan kelilingnya, 18,84 cm dengan tingginya, 5 cm. Jadi, 18,84 cm x 5 cm = 94,2 cm2.[7] Iklan 1Bayangkan sebuah tabung yang utuh. Pertama, Anda membayangkan alas atas dan bawah dan mencari luas permukaan keduanya. Selanjutnya, Anda membayangkan dinding yang membentang di antara kedua alas tersebut dan mencari luasnya. Kali ini, bayangkan sebuah kaleng utuh, dan Anda akan mencari luas seluruh permukaannya.[8] 2Kalikan luas salah satu alasnya dengan dua. Kalikan saja hasil sebelumnya, 28,26 cm2 dengan 2 untuk mendapatkan luas kedua alas. Jadi, 28,26 x 2 = 56,52 cm2. Perhitungan ini memberikan luas kedua alas.[9] 3Jumlahkan luas selimut dan kedua alasnya. Setelah menjumlahkan luas kedua alas dan selimut tabung, Anda mendapatkan luas permukaan tabung. Yang harus Anda lakukan adalah menjumlahkan luas kedua alasnya, yaitu 56,52 cm2 dan luas selimutnya, yaitu 94,2 cm2. Jadi, 56,52 cm2 + 94,2 cm2 = 150,72 cm2. Luas permukaan tabung dengan tinggi 5 cm dan alas lingkaran dengan jari-jari 3 cm adalah 150,72 cm2.[10] Iklan Jika tinggi atau jari-jari Anda memiliki simbol akar kuadrat, bacalah artikel Mengalikan Akar Kuadrat untuk informasi lebih lanjut. Iklan Peringatan Selalu ingat untuk mengalikan luas alas dengan dua untuk menghitung alas yang kedua. Iklan Artikel wikiHow Terkait Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda?
Tabung atau silinder adalah bangun ruang yang sisi alas dan atasnya berbentuk lingkaran yang berhadapan, kongruen sama bentuk dan ukurannya, dan sejajar dengan satu sisi tegak berupa sisi lengkung. Tabung memiliki tiga sisi dan dua juga disebut prisma dengan alas dan tutup berbentuk lingkaran. Contoh benda yang berbentuk tabung adalah drum, pipa air, kaleng, gelas, dan sebagainya. Dalam pelajaran matematika, diketahui cara mencari rumus volume tabung dan luas permukaan tabung sebagai Volume TabungUntuk menghitung volume tabung, ingat rumus dasar luas yaitu alas dikali tinggi. Alas tabung berbentuk lingkaran, maka luas lingkaran digunakan untuk mencari volume volume tabung adalah πr2t. Satuan volume tabung adalah kubik dengan lambang pangkat tiga, misalnya sentimeter kubik cm3 dan meter kubik m3.Contoh Soal Volume TabungAdapun contoh soal volume tabung dan pembahasannya adalah sebagai berikut. 1. Hitunglah volume tabung yang mempunyai jari-jari alas 20 cm dan tinggi 50 r = 20 cm; t = 50 cm;π = 3,14Volume tabung = πr2t = 3,14 x 20 x 20 x 50 = cm3Jadi, volume tabung adalah cm3. 2. Hitung volume tabung yang mempunyai jari-jari alas 7 cm dan tinggi 20 r = 7 cm; t = 20cm; π = 3,14Volume tabung = πr2t = 22/7 x 7 x 7 x 20 = cm3Jadi, volume tabung adalah Sebuah tangki berbentuk tabung terisi penuh oleh air. Pada tangki tersebut tertulis volume cm3. Jari-jari alas tabung adalah 10 cm. Hitunglah tinggi air V = cm3; r = 10 cm; π = 3,14Volume tabung = = 3,14 x 10 x 10 x = 314 x = t22,29 = tJadi, tinggi air tersebut adalah 22,29 Sebuah tabung terisi penuh oleh cm3 air. Jari-jari alas tabung adalah 10 cm. Hitung tinggi air V = cm3; r = 10 cm; π = 3,14Volume tabung = = 3,14 x 10 x 10 x = 314 x t16 = tJadi, tinggi air tersebut adalah 16 Luas Permukaan TabungTabung Permukaan tabung terdiri dari selimut tabung, sisi atas tutup, dan sisi bawah alas. Selimut tabung berbentuk persegi panjang. Untuk menghitung luas permukaan tabung, jumlahkan luas dari unsur pembentuknya, yaitu luas selimut tabung, luas sisi alas, dan luas sisi atas permukaan tabung = 2πrt + 2πr2 = 2πr t + rDirangkum dari buku “Mathematics for Junior High School” oleh University of Maryland Mathematics Project, beberapa rumus luas lain yang digunakan pada tabung adalah sebagai alas tabung = Luas tutup tabung = πr2Luas selimut tabung = 2πrtLuas permukaan tabung tanpa tutup = 2πrt + πr2 = πr 2t + rKeteranganπ = 3,14 atau 22/7r = jari-jari alas tabung lingkarant = tinggi tabungContoh Soal Luas Permukaan TabungBeberapa contoh soal luas permukaan tabung dengan pembahasannya adalah sebagai Diketahui tabung dengan jari-jari alas 7 cm dan tingginya 10 cm. Hitung luas permukaan r = 7 cm; t = 10 cm; π = 22/7Luas permukaan tabung = 2πr t + r = 2 x 22/7 x 7 10 + 7 = 44 x 10 + 17 = 44 x 17 = 748 cm2Maka luas permukaan tabung adalah 748 Diketahui luas selimut tabung adalah cm2. Jika jari-jari alasnya 14 cm, tentukan luas permukaan tabung L selimut tabung = cm2; r = 14 cm; π = 22/ selimut tabung = = 2 x 22/7 x 14 x = 88 x t25 = tSehingga diketahui tinggi tabung adalah 25 cm yang digunakan untuk menentukan luas permukaan permukaan tabung = 2πr t + r = 2 x 22/7 x 14 25 + 14 = 88 x 39 = cm2Jadi, luas permukaan tabung adalah Sebuah kaleng berbentuk tabung yang mempunyai diameter 7 cm dan tinggi 8 cm. Sepanjang sisi samping kaleng ditempel kertas. Tentukan luas kertas tersebut!PembahasanDiketahui d = 7 cm; t = 8 cm; π = 3,14Luas kertas adalah luas selimut tabung. Ingat bahwa jari-jari adalah setengah diameter, maka r = 7/2 = 3,5 selimut tabung = 2πrt = 2 x 3,14 x 3,5 x 8 = cm2Jadi, luas kertas yang ditempel sepanjang sisi kaleng adalah Sebuah tabung berjari-jari 10 cm. Jika tingginya 30 cm, hitung luas r = 10 cm; t = 30 cm; π = 3,14Luas permukaan tabung = 2πr t + r = 2 x 3,14 x 10 30 + 10 = cm2Jadi, luas permukaan tabung tersebut adalah TabungDirangkum dari buku “Belajar Matematika Aktif dan Menyenangkan” oleh Wahyudin Djumanta dan Dwi Susanti, unsur-unsur tabung adalah sebagai tabung KatadataSisi atas/tutup dan bawah/alas tabung berupa T1 dan T2 masing-masing dinamakan pusat lingkaran, yaitu titik tertentu yang mempunyai jarak sama terhadap semua titik pada lingkaran A dan B pada lingkaran alas tabung, sedangkan titik C dan D pada lingkaran garis T1A dan T1B dinamakan jari-jari lingkaran, yaitu jarak pusat lingkaran ke titik pada garis AB dinamakan diameter atau garis tengah lingkaran, yaitu ruas garis yang menghubungkan dua titik pada lingkaran dan melalui titik pusat garis yang menghubungkan titik T1 dan T2 dinamakan tinggi tabung t. Tinggi tabung disebut juga sumbu simetri putar lengkung tabung adalah selimut tabung yang berbentuk persegi panjang. Adapun garis-garis pada sisi lengkung yang sejajar dengan sumbu tabung ruas garis T1T2 dinamakan garis pelukis tabung adalahAlas dan tutupnya berbentuk 2 buah 3 buah bidang 2 rusuk lengkung, yaitu lengkungan sisi alas dan mempunyai titik pembahasan mengenai rumus volume tabung dan luas permukaan serta contoh soal.
luas permukaan tabung yang panjang jari jari alasnya 9 cm